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Abstract  
 
In power generation industry, diagnosing or balancing rotor vibration on large flexible rotors 
generally follows traditional applied rotor dynamics, where measured distributed rotor runouts 
are equated to “unbalances”, which during rotor operation are assumed to excite a specific 
harmonic mode of the rotor at a specific operating angular velocity.  In this paper it is clarified 
that the rotor behavior at the fundamental system critical velocity is not equivalent to harmonic 
resonance oscillation theory in physics. This system resonance behavior of a rotor in a rotor­
bearing system encompasses very different behaviors and forces than what is seen within the 
external excitation of a “free” rotor’s natural fundamental harmonic resonance at its inherent 
fundamental natural frequency.  It is shown that what appears as a harmonic modal deflection is a 
rotating but non­oscillating static deformation that is created in an accelerated rotor under drive 
torque, formed by and driven by a rotating moment from the rotor’s radially eccentric center of 
mass while gravity constrains the rotor in its journals in non­centroidal rotation. It is explained 
that in eccentric rotors, this system resonance phenomenon changes the location in space of the 
center of mass of the rotor body relative to the journal’s rotation axis, as well as creates 
conditions for the self centering and reorientation of the rotor body mass axis once accelerated 
through its peak deflection at the system critical velocity, and this is often measured and observed 
as an unexpected drifting of the rotor shaft centerline position in its bearings. This process 
corresponds to a transfer of rotating and non­rotating reference frames through the critical 
velocity at approximately 90 degrees phase angle, at which point the rotor transitions to a 
“natural” centroidal rotation about its longitudinal center of mass axis. The observed angular 
response phase shift through the first system critical speed arises through conservation of angular 
momentum, and is not created just from system linear damping. This paper also determines the 
range of velocities of these rotor­bearing system “resonance” behaviors.  The specific role of a 
rotor’s inherent “free” resonance or internal eigenvectors and eigenvalues pertains primarily in 
design as a maximum stable system operating speed.  The presented research is based on an 
inertial theory of rotor dynamics based on an equation of motion developed using impulse and 
momentum in an “open system” of continuous torque/energy input. The result of this research 
and understanding of rotor dynamics is of particular importance when developing balancing 
methods for rotors in the power generation industry for turbine­generator sets generating over 
~40 MVA of electric power.  Such an improved balancing method is also briefly presented, and it 
is recommended that such an approach be implemented in industry and incorporated within 
current balancing standards as a separate subsection for these very large flexible rotors. The 
equations and plots in this paper were originally presented by A.Y. Zhyvotov at the 13th World 
Congress in Mechanism and Machine Science in Guanajuato, Mexico in 2011, and this paper 
heavily expands upon that theoretical presentation.   
 
Keywords: Critical Velocity, Natural Resonance, Stability, Reference Frames, Constraints, 
Balancing 
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1.  Introduction  
 

The standard for diagnostics and balancing specifically of large flexible turbine and generator 
rotors in power generation (over ~40 MVA) with "significant" eccentricities or a bow (with an 
eccentric mass axis of  > ~2mils) should receive their own categorical approach and treatment as a 
special subgroup for solving vibrations while in service shops. This should include modified, 
improved balancing methods on balancing machines, and should be applied in resolving 
vibrations and stability issues in operation, separately from the well established “industry 
standard” practical approaches on all other high speed rotating machines. 
 

For new rotors within accepted tolerances for residual eccentricities, existing standards are well 
proven and successful, even for these large rotors.  However, “service industry established 
standards” are insufficient and less than optimized for the specific cases of large, flexible 
turbine/generator rotors with significant distributed mass eccentricity. The development of a new 
branch or subsection of standards applies especially to this unique segment of rotors which in 
practice creates the great majority of disruption in operation and cost to users in the power 
generation industry.   
 

Note that in order to explain and understand why this special treatment and modified approach is 
necessary and why it is successful, it requires a fundamental and novel review of rotor dynamic 
processes that occur (or that are uniquely applicable) in these large, flexible and eccentric/bowed 
rotors in the service industry. The conclusions in this paper are derived from both experiment and 
analytical verification, considering a rotor as a continuous solid body (not a "point mass" 
superposition) with eccentric mass axis, constrained by gravity on flexible supports, as a 
horizontal rotating machine viewed as a rotor­bearing system. From the results of the study, and 
in comparison with commonly applied industry standard processes when dealing with such 
turbine and generator rotors undergoing service work and balancing, it is necessary to present a 
number of key differences in the assumptions and understanding of what is physically occurring 
in the rotor, and differences in the analysis and diagnostics of real data collected from vibration 
sensors, and in its practical interpretation and application.  
 

In rotating machines, rotor vibration is commonly understood and visualized as a flexible linearly 
oscillating deformation of a beam (per a mass­spring­damper model), similar to a statically 
tensioned excited harp string exhibiting a modal shape, except that in a rotating machine as a 
system, it happens to also be rotating by an external torque force.  This motion is also typically 
considered only in the rotor alone.  However, to best understand rotating machine vibration and to 
best apply the understanding in design and in diagnostics, troubleshooting and balancing, rotors 
(and their measured “vibration”) should be looked at only within the context of a rotor as a 
continuous solid body interacting with supports within a combined rotor/bearing system.  Here we 
must make a distinction between a rotor‘s fundamental natural harmonic oscillation (longitudinal 
velocity wave such as when it is hanging “free” and impacted and excited by a impulse force, 
orthogonal to rotor mass axis, and sufficiently large proportional to rotor mass), versus pseudo­
static rotor deflection. In pseudo­static deflection, the rotor may bend/deflect from internal 
asymmetric “centrifugal” forces (reactive to centripetal forces) and will synchronously rotate 
(precess) in this bent/deflected shape as a “rotating banana” without oscillating linearly as a 
plucked guitar string. This “static” deflected shape is analogous to the fundamental harmonic 
mode shape, but without harmonic oscillation, even though vibration proximity sensors read the 
motion of the measured rotor surface as sine wave (which as a mathematical creation from signals 
from two orthogonal transducers presents the proper orbital motion). 
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The rotating machine must be viewed as a system, and the system is best represented as acting as 
an energy converter in an open system, converting continuous torque (power) input into circular 
motion of the rotor mass.  Understanding the vibrations requires recognizing its root source as a 
form of this energy conversion, within an accelerated rotor mass from a state of rest to an angular 
velocity determined as the rotor system “critical velocity”.  An open system model is important 
because the presented rotor behaviors depend on the presence of continuous torque input and 
rotor acceleration. When an eccentric rotor is accelerated, the output of the energy conversion 
process is a combination of the desired kinetic energy converted to useful work, and the undesired 
lost energy which is manifested in rotor “vibration”. This lost energy appears as kinetic energy as 
a translational orbital motion in “space” (and also absorbed via an increased moment of inertia to 
maintain rotation speed), and appears as potential energy in the form of internal rotor strain and as 
temperature and cyclic pressure transmitted to the bearings and supports.   
 
It is helpful to view a continuous rotor body as a sum of internal molecules with binding energy 
based on the rotor’s material atomic structure. If an accelerating rotor is ideally “rigid”, then the 
internal mass binding energy does not allow any external deformation (bending between 
constraints), and the total added energy is converted to synchronous oscillating pressure on the 
rotor supports. If an accelerating rotor is “flexible”, (i.e. deflects/sags > ~2 mils under gravity at 
rest, as most large rotors in practice do), then as the rotor is accelerated from a state of rest, it will 
still behave as “rigid” up to the rotor angular velocity corresponding to the beginning of rotor 
system critical velocity range, but from this point on the rotor will undergo a pseudo­static 
deformation.  The sum of axially distributed centrifugal forces in purely “rigid” rotors is 100% 
transmitted to the journal constraints. The sum of centrifugal forces of axially distributed 
centrifugal forces in “flexible” rotors is proportioned between forces transmitted to the journal 
constraints and into rotor bending/deformation up to the system critical velocity at ~ 90 degrees 
phase, based on the rigidity of the rotor material.   
 
Within this energy conversion model is the phenomenon through the system critical velocity 
range, of a process where a rotor with any amount of body mass eccentricity transitions from a 
forced non­centroidal rotation to a “natural” centroidal rotation about its inherent longitudinal 
center of mass axis. This transition or “critical speed” process is the reason why a rotor in an 
appropriately designed rotor­bearing system can operate safely at speeds above its fundamental 
system critical velocity.  In the very first days of rotating machine design in the 19th century, 
based on a simple model of circular motion of a mass on a spring, it was hypothesized that no 
machine could operate above its critical speed, predicting that the centrifugal forces of 
“unbalance” would continually grow with increasing rotation speed and destroy the machine. Of 
course this concern was proven false, but the full explanation why, has not been shown in fullest 
detail, with much of the explanation historically attributed to the affects of damping in the system, 
founded on a modeled representation of linear oscillation. However, while damping provides an 
excellent and predictive mathematically modeled explanation, it has not been shown that external 
damping alone truly represents the complete physics of the system critical velocity resonance 
phenomenon in horizontal rotating machines.   
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2.  Key Points in the Behavior of Large, Flexible Eccentric Rotors 
 
Presented here is first a qualitative discussion of the behavior of large flexible rotors with 
significant distributed mass eccentricity, and the application of these behaviors toward rotor 
balancing for these cases. Following this section is a theoretical and mathematical presentation of 
the rotor behavior and determination of the specific parameters governing it.  Note that in this 
paper in forthcoming descriptions, the term “precession” is used solely to indicate the circular 
translation in space of the rotor mass axis about the rotor journals (or spin) axis within the solid 
rotor body, and is not referring to precession as the circular “wobble” of the orientation of an axis 
of rotation. Similarly, the term “whirling” is used to distinguish and indicate the circular 
translation of the rotor journal (or spin) axis about the rotor mass axis.   

 
Rotor behavior with mass eccentricity 
 
2.1. Translation orbit vs. linear harmonic oscillation.  Rotating machine vibration at the first 
system critical speed is not a cyclic modal harmonic linear oscillation of the rotor excited by rotor 
"unbalance".  Instead it is a synchronous precession of the quasi­static (non­oscillating) rotor 
body as a result of axially distributed masses along the rotor body between its bearings. These 
masses form a centroidal axis radially offset or skewed relative to the journal centerline axis, 
which during rotor acceleration leads to an orbit amplitude rise due to the prevention of the rotor 
achieving a "natural" centroidal rotation. This longitudinal centroidal axis (mass axis) is 
precessing synchronously around the journal axis when a rotor is accelerated from a state of rest 
until reaching its first system critical velocity at ~ 90 degrees phase.  The resulting lateral 
translation of the journals (as orbital motion), and increasing radius of orbital motion during rotor 
acceleration, comes from gravity holding and forcing the rotor to spin about its journal centerline 
around its designed, but non­centroidal rotation axis, and from preventing the rotor from being 
able to revert to and spin in its natural state about its centroidal axis. This condition is created by 
the interaction between centrifugal forces from inherent axially distributed mass axis eccentricity, 
and a countering "torque moment" from the eccentric rotor’s overall centroidal moment of inertia. 
(“Torque moment” refers to the constant net radial moment applied during angular acceleration 
within a forced non­centroidal rotation, created between the forced rotation centerline and the 
eccentric center of mass at a given radial plane that would tend to rotate or “flip” the rotor about 
its longitudinal centroidal mass axis).  The resultant journal motion is within the bearing 
clearances, while the rotor mass axis remains in a "rigid mode" state. 
 
This is contrary to the general assumption in rotor dynamic theory used in rotating machine 
design and in industry that views "unbalance" akin to the typical mathematical model as being a 
force vector from an equivalent point mass, acting radially out from the journal axis (as a non­
rotating inertial reference frame), exciting the rotor's first mode harmonic at the "first critical 
speed".  Note that "rigid mode" here can incorporate quasi­static bending/deflection as an 
analogous eigenvector of the rotor body, with that deflected shape maintained while in 
synchronous precession, but it does not include cyclic­flexing of the rotor body in a linear 
harmonic oscillation of a mode shape (as in a plucked resonating guitar string), notwithstanding 
any ellipticity of the orbit.  Linear harmonic oscillation does occur but only within the bearing 
supports, not in the rotor body itself.   
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Figure1.  Rotor response modes, orbits and stability axis with increasing speed. 
 

 

Speed thresholds of rotor behavior. For a stable operating rotor, the operating 
of the rotor in a rotating machine must be lower than the rotor's natural harmonic 

n unconstrained free state. That implies that the rotor should behave as a 
speed range. When rotor operating speed is equal or slightly higher 

true natural harmonic resonance frequency (flexural mode), the rotor becomes 
highly susceptible to instability at such speed, when it is excited by any external disturbing forces 
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Cylindrical rotors in rotational motion in horizontal rotor­bearing systems in a gravity 
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2.3. Rotor stability and shaft centerline motion.  The gravity­dependent pseudo­static stability of 
the journal axis and its position in space (within bearing clearances), up to and at the first system 
critical speed, is established by the interaction between the apparent gravity load (the rotor's 
attitude angle, as the resultant from real gravity force and orthogonal reactive lateral force) and 
the friction force of the flowing pressurized bearing oil in reaction to the surface of the spinning 
journals as it passes through the "orifice" at minimum oil film thickness (at the point/position of 
the apparent gravity load). The end of this region corresponds to the angular velocity with a phase 
angle reaching 180 degrees, where there is a narrow window of operation in natural stability 
(Figure 2).  This is a defined point in space and time when the rotor reaches a state of ideal 
dynamic self­balancing and self­centering of the centroidal mass axis. This is also a transition 
point passing from stability and shaft centerline location governed by gravity alone to the more 
dominant inertial self­centering governing the pseudo­static state of the shaft centerline (SCL). 
 
The further self­centering and orientation “in space” of the SCL at super­critical velocities, 
relative to global fixed (Newtonian) coordinates, is proportional to rotor drive torque and is 
governed by the axially distributed moments in each of the two fundamental­mode modal 
elements (comprising each axial half of the rotor). Each of these modal elements is rigidly 
constrained at the rotor’s overall axial center of mass (COM) on its one end (shared by both 
modal elements), and elastically constrained at the outer ends at the bearings and supports.  
 

 
Figure2.  Pseudo-static stable position of the rotor journal in hydrodynamic bearings 
 
2.4. Transition through the system critical speed range. Upon crossing the critical velocity peak 
(at a phase angle of ~90 degrees), the rotor body centroidal axis reverts to "natural motion" 
(Newton’s 1st Law of Motion) and the centroidal mass axis itself becomes the non­rotating 
reference frame in place of the journal axis as had been up to this point, with the centroidal axis 
becoming rigidly constrained in space at a nodal point at the rotor's axial center of mass. While 
displacement orbits at the bearings appear identical across this transition at the critical speed, both 
before ~90 degrees and after ~ 90 degrees phase angle, the centers of the orbit changes relative to 
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external fixed global coordinates (what the fixed measuring probes represent), and observed 
journal displacements decrease with further rotor acceleration from the system critical peak until 
reaching a phase angle of 180 degrees, with the rotor at its new, inertially self­centered  pseudo­
static position.  

During acceleration of a flexible rotor from the beginning of its system critical velocity range, 
and during a phase shift from 0 to ~ 90 degrees, the rotor is undergoing pseudo­static 
bending/deformation due to the conversion of external energy to rotor circular motion, in 
combination with internal radial asymmetric stress and axial strain adding to the rotor’s internal 
potential energy. When the rotor reaches a phase angle greater than ~ 90 degrees, and after a 
switch of its non­rotating reference frame as its center of whirling rotation, the stored potential 
energy from the deflected/stretched rotor “spring” is returned into the system in the form of 
kinetic energy, until the energy is dissipated during further rotor acceleration, and the self­
centering effect governed by inertial forces completes, defining the end of the critical velocity 
range at 180 degrees phase shift.  
 
This entire "self­centering" process is akin to what occurs in a vertical rotor, even if eccentric, as 
a vertical rotor would naturally spin about its centroidal mass axis nearly immediately upon the 
application of drive torque (as bearing support stiffness perpendicular to gravity is minimal, and 
therefore so is the system stiffness and the first "system" critical speed).  By contrast, in a 
horizontal machine with journal surfaces held down by gravity to force rotation about a non­
centroidal journal axis, sufficient rotation speed and momentum must build before this transition 
can occur across the first system critical speed.  Similarly, a horizontal rotor on a soft­bearing 
balancing machine (where balancing is done at a speed above the system 1st critical speed), with 
a single degree of freedom in the horizontal plane with very low support stiffness, also quickly 
self­aligns its rotation to its mass centroidal axis at low speed, relative to a fixed/Newtonian 
coordinate reference to which the rotor was installed and aligned in its state of rest on the 
balancing machine. This change of non­rotating reference frame position can be observed on a 
shaft centerline plot.  (Further, this is the reason why the balancing of a bowed rotor or a rotor 
with a significant mass axis eccentricity on low­speed balancing machines with soft supports, 
using the standard static­couple method of balancing, balances the rotor about its mass axis, not 
its journal/coupling centerline axis, often leading to high vibrations when coupled to another rotor 
in an operating machine.) 
 
2.6.  Above the first system critical velocity With further acceleration above the first system 
critical velocity region, the rotor mass axis continues self­centering, governed by inertia forces 
from net residual axially asymmetrically distributed eccentricities, proportional to angular 
velocity until reaching maximum operating speed.  In installed operating machines, the residual 
eccentricities can be internal to the rotor and external to any change in alignment of the bearings, 
or can be due to discontinuity of the mass axis across coupled rotors at the rigid coupling 
connections to adjacent rotors in a rotor train.  Since this self­centering is driven by torque, self­
centering will also continue similarly through the machine’s full load range as torque increases, 
observed as a drift in the shaft centerline position.  
 
Above the first system critical speed region, with the rotor body mass axis as a pseudo­static, 
self­centering, non­rotating inertial reference frame in space (within clearances of the bearings 
and seals), with further acceleration, the journal geometric centerline at each rotor end continues 
in conical synchronous whirling around the mass axis, with journal orbit amplitudes proportional 
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to rotor angular velocity (assuming the rotor perpendicular to gravity, and now inertially 
constrained via a nodal pivoting point at the axial center of mass). The interpretation of the sensor 
data at the designated measuring points coming from the sensors referenced to global coordinates 
creates a perception of a rotor rocking motion "out of phase" as though the rocking were about 
the same journal axis centerline reference as seen below the first system critical. In reality, the 
total rotor is pivoting at the axial center of the mass axis with the mass axis self­centered/aligned 
in space, and the journals at each end are whirling about the mass axis (within bearing and seal 
clearances) as two opposing cantilevers from the axial center of mass.  This rocking condition is 
not a second harmonic rotor response but arises as a manifestation of the overall rotor mass 
eccentricity magnitude being axially biased relative to the rotor's axial center of mass. The axial 
side to which the eccentricity is biased becomes a driving end, and since the rotor has some 
rigidity, it will drive the other end “out of phase” across the center of mass, while the outboard 
ends remain conically whirling.  
 
A "second system critical" response can also occur superimposed on top of this rocking motion, 
and depends on the axial asymmetry of the eccentricity distribution and its magnitude. This 
second system critical represents a process self­similar to what occurs within the first system 
speed region of the total rotor, but now acting on each cantilevered whirling half of the rotor. The 
rotor half with the greater residual eccentricity similarly deflects from the corresponding reactive 
centrifugal force, reacting against the constraints at the bearing and at the nodal pivot point at the 
total rotor center of mass, and progresses through another 180 degrees of shift in phase angle, 
again self­centering about the mass axis as now governed by the residual eccentricity on this 
cantilevered half of the rotor.  Nonetheless, any "second system critical" response should be 
balanced as a part of the solution (and correct axial distribution) of the first system critical 
response, since by removing the source of excitation, no further response amplitudes should be 
seen at all at higher speeds.   
 
In summary, the states and reference frames of a rotor as it is accelerated from a state of rest 
through the system fundamental critical velocity and to operating speed are presented in Figures 
3a, b, c, d and e.   

 
 
Figure 3a Concentric rotor,   Figure 3b Mass axis precessing   Figure 3c Journal axis whirling 
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Figure 3d Flexible rotor mass axis precessing,   Figure3e Flexible rotor with journals pivoting. 
 

3.  Application to rotor balancing and design  
 
Considering the difference between a continuous rotor’s natural fundamental harmonic resonance 
response in a free state, and the forced pseudo­static deformation and self­centering transition that 
occurs through the system first critical speed region, it is then better understood why it is crucial 
to restore radial mass symmetry about the designed journal axis.  It follows that large rotors with 
an eccentric mass axis, whether bowed,  “rigid” or “flexible”, must be balanced by compensating 
and mirroring the mass axis with dynamic forces from balance weights, preventing the quasi­
static deflection precession response and the associated switch in axis of rotation and mass axis 
self­centering.   
 
To simplify the visualization of the mass axis in a rotor with a continuous axially distributed 
eccentricity, the eccentricity can be reduced by superposition in a minimum of three axial planes 
along on the rotor’s longitudinal axis: at the total rotor center of mass, and two points at the 
centers of masses of the modal elements of the rotor fundamental harmonic mode (each half of 
the rotor).  The use of a minimum of three planes derives from the formula 2N+1, with N being 
the ordinal number of the mode of the analogous eigenvector being viewed.  2N+1 provides the 
minimum number of divisions of the rotor (eigenvector peaks and nodes) where there is no 
bending between divisions, and each resulting modal element behaves as fully “rigid” through the 
associated speed range.  Therefore, the mass axis can be accurately represented by reducing the 
distributed rotor eccentricity to its total amount and angle within each “rigid” modal element, and 
placing that superposition of eccentric mass at the respective center of mass of each of these 
“rigid modal elements”.  The principle of dividing a rotor into modal elements and associated 
locations of weight placement is shown in Figure 4.  
 
These points of superposition provide a practical guide for rigid­mode balancing by dynamically 
compensating the centroidal mass axis, but in a distribution that is then assured to not otherwise 
bend or deform the rotor from its intrinsic shape. For eliminating the response at the first system 
critical (where 2N+1 gives us three planes, and two modal elements), a distribution in three 
planes mirrors the mass axis about the journal axis by utilizing three, 180­degree opposing 
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counter masses, all laying on the same line and axially proportionally distributed to match the 
eccentricity distribution.  Weight distribution can be up to 100% on one or the other side axially, 
but never with more than 50% of the total correction weight at the total rotor center of mass at the 
mid plane.  In a typical large turbine rotor, the same affect is still correctly achieved using the 
rotor mid plane and two end planes, even though the end planes do not align with the modal 
element centers of mass. (A large flexible rotor with significant eccentricity can never be 
properly balanced if only two planes are present.)  In the case of an eccentric but torsionally 
twisted or spiral rotor mass axis, correction should be done still in three planes in the same 
manner, but first broken into orthogonal components, creating a 3­plane solution only in the “X” 
direction, and then only in the “Y” direction, following the respective sensors measuring the rotor 
motion.   

 
Figure 4 Graphical presentation of the division of rotor modal elements, and weight placement 
distributed in three balancing planes to resolve a first system critical response and to mirror the 
eccentricity distribution and mass axis. 
 
In all cases, the balance solution is best determined at angular velocities up to the system first 
critical velocity corresponding to a response phase angle just below ~90 degrees, where the 
measured amplitudes are near a maximum.  This ensures that the rotor rotation is still forced­
centered about its journal axis when the response is measured, and assures that the balance 
solution directly compensates the effects of mass eccentricity about the rotor's journal axis.  
 
At higher speeds, after satisfactorily resolving the first system critical response, any out­of­phase 
response amplitudes measured above the first system critical speed should not be considered as a 
couple unbalance or "dynamic" unbalance, as decomposition along with a "static" unbalance of 
some total mass distribution. The same unbalance, which is all on one radial side of the rotor (like 
a bow, but with axially asymmetric distribution) is causing both the lateral response and "rocking" 
response, and should be resolved as combined in a single balance solution, of which the axial 
distribution of correction masses (in a minimum of three planes) is the key factor.  Although the 
resulting motion above the first system critical velocity region may appear "out­of­phase", the 
forces causing it are not.  As such, this conical whirling condition should not be "balanced" with a 
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couple shot at the journals. A couple shot does not actually restore symmetry about the journal 
axis, which must be the primary goal.  Recalling that rotor rotation is now self­aligned to and 
centroidal about the mass axis, a calculated couple shot only "bends back" the journals at the 
outboard rotor ends relative to rotor rotation about the mass axis.   
 

 
Figure 5 Applying a standard “static + couple” balance solution to attempt to resolve out­of­
phase motion above the first system critical, leaving the rotor “balanced” about its mass axis. 
 
Rather, balancing the out­of­phase motion should be done with a half­couple, at the total center 
of mass and at one journal (a modified "s"­shot), or at the total rotor center of mass and at a 
balancing plane close to the center of mass of the modal element(s) that comprise each half of the 
rotor. This modified “s­shot” causes no net change in the already­resolved and shifted mass axis 
position after having suitably corrected the first system critical response, but is effectively axially 
redistributing the weights for the first critical correction.  Weight should be placed first on the 
side of the rotor that in a polar plot shows both "loops" of the response from the first and second 
system critical speed regions in the same general phase angle direction, since this identifies it as 
the driving end with greater mass eccentricity (the distribution of eccentricity is axially biased 
toward this side).  This should be done at a speed above the first system critical as a trim shot 
only if an initial solution in three planes is not yet properly axially distributed (the balance 
solution determined from a speed just below 90 degrees of the first system critical).  
 
It could be noted that the first system critical amplitudes can be reduced even with standard 
methods of a “static and couple”, but typically when placing the “static” shot in one plane, the 
rocking mode or second system critical response will not improve or will be increased.  Likewise, 
reducing the measured rocking mode amplitude can also be achieved by standard methods of a 
“couple shot” from influence coefficients, but then very likely the first system critical response 
will be increased. Frequently in a balancing facility using standard methods with an eccentric, 
flexible rotor, there is a continuous back­and­forth between improving one response but 
worsening the other.  However, by simply radially and axially compensating the mass axis of 
flexible rotor in three planes, it resolves all responses at the same time and for all speeds.  If there 
is effectively no eccentricity and the journal and mass axes are coincident, then there will be no 
vibration responses at the first system critical speed or higher, and the rotor will maintain natural 
operation about its installed and coupled journal axis at all speeds after being installed in an 
operating machine.  As a secondary benefit, this overall approach is more economically 
advantageous to be able to balance primarily at lower speeds, saving drive power and time in the 
balancing facility.   
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3.1. Resolving vibration on smaller, higher speed machines.   Although the same rotor dynamic 
processes described previously apply to all rotating machines, there is a distinction in solving the 
effects of rotor eccentricity or unbalance on high­speed rotating machines like compressors, jet 
engines or turbochargers, versus on large, low speed turbine­generator sets in power generation.  
Traditionally, vibrations and stability issues on high­speed rotating machinery with a high power 
density ratio, and with sufficient flexibility of modal elements, are resolved by a passive 
approach, primarily by various design modifications of bearings, seals and supports, which 
effectively account for and allow the self­centering of the rotor to its centroidal axis upon which it 
can run stably, without being constrained from this "natural" motion.  When it is not physically 
possible to remove all eccentricity by machining or balancing, due to the very small tolerances on 
smaller high­speed rotors, the key is to accommodate the self­centering of the rotor about its mass 
axis by sufficiently reducing stiffness in the supports relative to the rotor stiffness.  If the bearings 
cannot be made with sufficiently low stiffness, then another soft support under the bearings can 
achieve a similar result, allowing the rotor to pull the bearings with it as it self­aligns above the 
system critical velocity.  This approach allows for stable operation at higher speeds, although 
stability is still limited to an operating frequency less than the fundamental natural resonance 
frequency of the free unconstrained rotor body alone.   
 
For large turbine­generators with enormous mass and inertia, this passive approach is less 
practical and highly dependent on manufacturer design philosophy, and the focus must be instead 
on recognizing mass axis eccentricity and compensating it to restore symmetry about the journal 
axis, optimally by applying a balancing correction in three planes while at rotor sub­critical 
velocity.  
 
3.2. In-situ field balancing.  Various balancing methods based on "harmonic modal" responses at 
the 1st critical speed, and influence coefficient methods  at speeds above the first system critical 
speed, are currently broadly used in the service industry when field­balancing turbine and 
generator rotors in­situ. Most of these methods have been in use for years as a go­to remedy for 
resolving vibration on an operating machine.  However, it is important to remember that the in­
situ balancing of assembled operating turbine­generator sets is not truly "balancing", since 
without being able to properly axially compensate for all mass eccentricity in the required 
minimum number of balancing planes, the energy "stolen" by the inertia of the uncompensated 
eccentric mass still remains in the system.  As such, in­situ balancing is rather a political and 
economic compromise by the user, and a physical compromise between a reduction of vibration 
displacements of the journal axis relative to the centroidal mass axis (at points of measurements), 
which was expressed as kinetic energy, and the conversion of that same energy into an increase in 
rotor internal potential energy in the form of increased rotor cyclic stress and internal cyclic 
bending moments.  
 
3.3. Balance quality based on shaft centerline.  The rotor mass axis pseudo­static self­centering 
within bearings can be only observed on a shaft centerline plot, and on eccentric rotors is often 
seen as a continuing drift of the SCL, often in a "wrong" or an unexpected direction and 
magnitude.  This makes the SCL plot an indispensible part of identifying the existence of and the 
proper compensation of mass eccentricity in a rotor body, or for identifying any external 
disturbing force influencing the self­centering stability axis in operation. 
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Balance quality should therefore be additionally quantified by DC shaft centerline data, to carry 
 as much importance as AC amplitude measurements. Any ideally concentric rotor (on a 
balancing machine, and when well aligned and coupled in a rotor train), should not notably shift 
its shaft centerline in space once reaching a stable attitude angle in its bearings, and this should 
correspond to the rotor position at 180 degrees of phase angle just at the end of the first system 
critical speed region.  For a well­balanced rotor, further acceleration should present minimal 
continued SCL self centering drift with speed (due to unavoidable residual eccentricities). Any 
continuous drifting of the SCL of one side of the rotor with increasing speed above the first 
system critical indicates that mass eccentricity is not properly compensated, or bearing center 
position is changing relative to global coordinates (loose bearing), even if measured displacement 
amplitudes alone are within the permissible tolerance accepted in industry.  Similarly, if 
significant SCL hysteresis is observed between rotor acceleration and deceleration, it is indicative 
of unresolved mass axis eccentricity, and the rotor is not truly balanced with restored symmetry 
about its journal axis. Such a rotor will often present high vibration amplitudes and/or bearing 
forces once installed in the field when its journal centerline axis (but not its effective mass axis, 
about which it was “balanced”) is aligned relative to the centerline of the bearings, referenced to 
global coordinates. 
 
3.4 Rotor runout evaluation. Balancing is only one part of the overall process of eliminating the 
effect of eccentricity, and as such, rotor balancing should not be a procedural island for reducing 
machine vibrations, but for the most effective results in practice it must be directed as a single 
part of a larger shop process of identification and treatment of rotor mass eccentricity.   
Runout evaluation for example is essential to precede balancing activity for among other reasons, 
to identify if slow roll runout measured on a balancing machine is truly from surface variation (in 
which case runout subtraction can be appropriate), or if it is a part of the distributed 
eccentricity/bow that must be compensated, in which case runout subtraction provides a wholly 
incorrect implication.  
 

4.  Alternative look at rotor stability and operating design speed 
 
Before looking more deeply at the rotor dynamics specifically within the system resonance 
behavior through the fundamental system critical velocity region, it is important to consider rotor 
stability and instability in its bearings in a more general sense.  It is typically considered that 
instability such as subsynchronous whirling or oil whirl or oil whip is the fault of bearing design 
or oil quality problems. It is true that proper bearing design is important to be able to absorb the 
forces that create instability, and bearing design is the key avenue of vibration resolution for 
smaller and higher­speed machines.  However, the root of instability is most often in the rotor 
itself, originating in the asymmetric forces resulting from unresolved mass eccentricity, and/or 
from operating a rotor at high speeds above its "free" fundamental harmonic resonance frequency 
flexural mode.  Instability can also be created in combination with insufficient gravity load on a 
bearing in an assembled rotor train, which allows the asymmetric internal forces from the rotor 
eccentricity to overcome the stabilizing forces provided by the bearing/oil. (In such cases, 
vertically raising the unstable bearing can often resolve the problem. Excessively preloading a 
bearing as a matter of design to prevent instability is not recommended, however.)   
 

Rotating machines are generally designed and modeled on the assumed equivalency of circular 
and linear motions and corresponding Newton’s laws, and this has led to a common mixing of 
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linear harmonic oscillating resonance and rotating system linear resonance behavior.  It is 
important to always distinguish these as related but separate phenomena governed by different 
factors.  This recognition can point to a number of general design guidelines with regard to rotor 
and bearing stiffnesses and natural frequencies, and the operating speed of the machine, that 
should be adhered to in order to prevent instability in machine operation (or utilized to diagnose 
the root cause of observed instability when the rotating system comes outside of the guidelines).  
 
4.1 Unconstrained rotor natural harmonic versus constrained rotor system critical speed 
 
Continuous rotors, as machine elements of finite length, must be sufficiently “rigid” and stable in 
system sub­critical, critical and super­critical design operating velocity ranges to ensure pseudo­
static stable operation (a stable inertial reference frame). With that in mind, it must be ensured 
that any rotor is designed to behave as internally non­oscillating and “rigid” within the machine 
design operating speed range and up to maximum system external torque, while maintaining 
energy conversion efficiency. This is dependent on rotor material properties and rigidity, with the 
rotor constrained by gravity on linearly oscillating flexible supports of appropriate stiffness.   
 
As an initial rule, it is crucial for reliable system dynamic stability that the rotor operates at 
speeds below the equivalent “free” fundamental harmonic frequency of the rotor body alone.  It is 
also important that the bearing/supports have a lower net stiffness than the rotor body.  If a rotor 
operates at a speed above its “free” fundamental harmonic frequency, it is prone to uncontrolled 
internal flexural bending that can induce dynamic instability.  If the bearing/supports are stiffer 
than the rotor and the rotor is effectively "clamped" at its ends, this can inhibit the transition from 
non­centroidal to centroidal rotation (or increase the speed at which it occurs), such that the 
asymmetric forces from eccentricity within the rotor, which grow with the square of speed, 
become excessively damaging to the rotor material (or are transferred to the bearing material) 
before such a transition can occur (marked by the processes within the system fundamental 
critical velocity range).   
 
The rotor­bearing system with hydrodynamic oil bearings should be designed such that the first 
system critical speed is lower than 0.5x of the designed operating speed, and operating speed must 
be less and no more than equal to natural resonance frequency in free­free state.  If system 
parameters are outside these limits, then to build a stably operating rotor­bearing system for a 
necessary rotation speed requires stiffening the rotor or supports, or softening the supports, 
changing rotor material or bearings span length, and so on. Ultimately, the maximum rotor 
operating speed and maximum efficiency of a rotating machine is solely dependent on rotor 
material properties its fundamental harmonic resonance frequency in a free­free state and bearings 
and supports stiffness. 
 
As a design rule, the first system critical should be 10­20% below half of the machine running 
speed.  Although, on very flexible rotors with a high L/D ratio of 7 or larger, the critical speed can 
be much lower. On some generator rotors operating at 3600 rpm, the system 1st critical speed can 
be as low as ~700 rpm.  However, this condition also requires very soft supports to assure that 
rotor still remains operating in its “rigid” mode.  
 
With this, it ensures for the sake of stability that the rotor­bearing system can pass through its first 
system critical and reach a self­aligned state about its mass axis, including the effects of both 
radial asymmetry and axial asymmetry.  If support stiffness is such that a rotor passes its second 



22  

system critical speed, it approaches or it gets higher than rotor natural fundamental harmonic 
frequency of flexural mode, with increasing torque power, operating in this condition can leave 
the rotor susceptible to subsynchronous instability, especially in conditions where the gravity load 
on a bearing within a rotor train is reduced.  On such rotors it is especially important that mass 
axis eccentricity is minimized and the rotor properly balanced in three planes.  To enhance the 
likelihood of maintaining stability, even if encountering conditions with reduced bearing gravity 
load, the rotor should be operating at a speed greater than twice its first system critical speed, but 
lower than rotor fundamental harmonic resonance in free­free state.  In practice on rotor­bearing 
systems, the second system critical velocity/frequency is not a direct multiple of the first as in the 
pure harmonic vibration of a string, or perfectly symmetric cylinder, but as a general design 
parameter for all cases it is beneficial to maintain a factor of 0.5 x or lower between the first 
system critical velocity and running speed.  
 
In situations , when supports stiffness is changed intentionally by design ,or unintentional due to 
operating conditions it is important to compare the new system fundamental critical frequency 
relative to  the operating speed. A system (particularly one with stiff bearings and supports, such 
as ball bearings in rigid housing) that may have originally operated below its first system 
resonance frequency (“1stcritical”), “self­centering of its mass axis in “space”, might be altered at  
running speeds above its first system critical where the switch in rotation axis to the mass axis 
occurs. If any axially asymmetric mass eccentricity remains in the flexible rotor, damaging forces 
in bearings or cyclic bending forces in rotor, from kinetic energy can arise proportional to square 
of speed.  If the bearings supports are not appropriately softened and end up “clamping” the rotor 
at journals, preventing it from switching its rotation center and its natural reorientation, the result 
is increasingly large forces that will damage the bearings after a short duration of operation.   
 
Note to eliminate confusion: 
 
1 Rigid rotor in machine with rigid bearings and supports, the system 1st critical speed must 
be higher than operating speed. 
 
2. Flexible rotor in machine with hydrodynamic bearings and elastic supports, the system 1st 
critical speed must be 0.5 x or lower than operating speed. 
   
Further, significantly reduced bearing load on multiple rotor machine rotor train can effectively 
increase the length L of the rotor span between supports, acting to reduce the combined system 
resonance frequency, and also reduce the effective “free” resonance of this longer span (changing 
the ratio of K/M). This can potentially shift the free resonance frequency of this coupled rotor 
train below the operating speed, allowing for an internal flexural resonant response in the rotor 
train, with the associated resulting motion and forces inducing journal  subsynchronous  
instability. Similarly, when bearing is loose it reduces stiffness and increases susceptibility to 
rotor instability.   
 
4.2 Relation between harmonic resonance, critical speed, and support stiffness 
 
The following symbolic relations were developed as a summary and design guideline of the key 
factors that affect the critical velocity of an accelerated rotor­bearing system that govern the 
stability of the rotor in its bearings.  These relations are not intended as an equation for 
calculating frequency values, but as a simple tool to recognize the specific sources of potential 
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rotor instability and sensitivity to “unbalance” to set limits to the relevant values for optimum 
design (regarding rotor material properties and stiffness, bearing stiffness, and maximum stable 
operating speed and torque), and to identify the system properties that can cause observed 
subsynchronous vibration or high sensitivity to unbalance.  A main challenge in assessing these 
parameters comes from the fact that rotor fundamental harmonic resonance in free­free state, and 
a linear system response at 1st critical speed, are not the same physical phenomena. It is 
impossible to mathematically combine these parameters into a single comprehensive equation, 
since they represent a combination of forces and affects in multiple reference frames, where some 
terms represent angular vectors of rotor internal mass, and linear vectors of system springs in 
gravity environment, such the terms can only be expressed as proportionality. Therefore, these 
relations should be interpreted more generally as flowchart of parameters of comparison.   
 
First, it is helpful to distinguish differences between equation generally utilized for determining 
fundamental harmonic natural frequency as a rotor linear oscillation, independent of distance L 
between nodes, and equation utilized for determination of fundamental harmonic resonance 
frequency of continuous rotor as geometric body derived as harmonics in music (e.g. guitar or 
harp strings).  
The well known equation for determining unconstrained rotor fundamental harmonic resonance is 
generally expressed as: 

 

 
 
The equation is almost exclusively used in rotordynamics for modeling rotors as a point mass on 
linear viscoelastic supports, and calculating rotor’s harmonics based on Euler­Bernoulli beam 
theory.  The equation above represents the rotor first mode as a linearly oscillating harmonic 
wave. But, this does not actually represent the real accelerated rotor in circular motion, 
constrained in bearings by gravity on horizontal machines, and its behavior at its first system 
critical velocity.   
 
When a rotor is considered as a continuous geometric body whether rigid or flexible, and not as a 
point mass on a spring, and free in a state of rest without gravity influence (such as vertically 
oriented with the mass axis in the direction of gravity), it still has an inherent free fundamental 
harmonic resonance frequency. The free harmonic resonance response is excited by kinetic 
energy as an impulse force to the rotor body perpendicular to the rotor’s longitudinal axis, with a 
resulting initial longitudinal traveling wave response propagating through the rotor material 
particles and reflecting, with the rotor molecular masses then vibrating internally at all harmonics 
of the fundamental frequency as internal standing waves.  The energy from the impulse acts as a 
disturbing force and converts to radial stress and axial strain, disturbing the state of equilibrium 
between the molecules constituting the rotor mass, and electromagnetic restoring forces propagate 
longitudinal vibration displacement patterns in the axial direction at the velocity V.  The initial 
longitudinal traveling wave in a free rotor would have a velocity determined based on the 
longitudinal stiffness of the rotor (analogous to tension, as in an oscillating constrained guitar 
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string). The added energy from the impulse perpendicular to mass axis, converts to sound energy 
returning back to environment at velocity of sound shown in equation below:  

 
 

The fundamental frequency is a standing wave such that the wavelength, W, is twice the length of 
the rotor, or 2L, and the corresponding eigenvector seen in the rotor is a half­waveform of a sine 
wave.  The rotating machine fundamental resonance frequency at rotor critical velocity could then 
be written as  
 

 
Therefore, an alternative presentation of the linear free resonance eigenvector of a rotor can be 
made in the following form, where T represents longitudinal tension and the mass M is also 
shown broken into its constituents, of volume, density and gravity.   
 

 
 

This version allows for the representation of the different types of natural frequencies comprising 
the overall system critical velocity.  The “spring” stiffness, K (lb/inch), in a rotor is typically 
considered in reference to the bending displacement measured perpendicular to the longitudinal 
axis of the rotor for a given force applied orthogonally to the rotor’s longitudinal axis. Since such 
a measurement is impractical to execute on large massive rotors, designers calculate the rotor’s 
stiffness based on gravity sag. Such bending displacement also produces longitudinal tension in a 
constrained rotor.  
 
Since the first system critical of a rotor­bearing system (horizontally mounted, in a gravity 
environment) must take into account all support stiffnesses, a symbolic representation of the 
parameters governing the first system critical velocity is shown in the following relation.  Note 
that the frequencies represented by the respective formulas are not truly equivalent, with the rotor 
frequency representing a longitudinal standing wave, and the supports representing frequencies 
corresponding to linear oscillation perpendicular to the rotor.  The overall system critical speed 
range is governed by when the spin frequency of the flexible rotor with eccentric mass axis 
(which is in growing pseudo­static bending/deflection from centrifugal force from eccentricity) 
approaches the natural resonance frequency of the supports (as linear oscillation), which creates 
the measured rise in total precession translational orbit amplitude of the rotor in space, within 
bearing clearances. 



25  

 
 
Returning to the previous relations between rotor free natural frequency, constrained rotor natural 
frequency, and system fundamental critical velocity, the following comparative relations can be 
presented as general guidelines for the relation between various parameters described previously.  
As a simple summary, a first system critical response “seen”  by sensors mounted relative to fixed 
(Newtonian )coordinates,  simulate the rotor as a half­waveform eigenvector, and the second 
system critical sees the rotor as a full­waveform eigenvector. However, both of these are "rigid" 
and in pseudo­static deflection.  A flexible rotor should not operate at a speed that produces any 
higher modal eigenvectors beyond these, because it can initiate rotor internal flexural 
bending/oscillation at the fundamental natural frequency of the rotor alone, which can create 
instability such as oil whirl during operation. The objective of designer is to maintain rotor as a 
rigid body, by properly tuning support stiffnesses. 
 
The relations and dependency between rotor fundamental harmonic resonance, rotating machine 
stable operating speed and operating rotating machine system total stiffnesses, are shown in 
equation below. 

 
 

 

5.  Resonance effect, and critical and resonance velocities 

 
The dynamics of a Jeffcott rotor used in the study in this paper, as disc rotating on a massless 
shaft, comprises the theoretical basis of many facets of rotor dynamics that have been studied in 
various scientific directions. It provides the understanding of physics for the processes that take 
place during a change in rotor angular velocity. The equations of Jeffcott rotor dynamics were 
obtained by the methods of classical mechanics in rotating and stationary systems of coordinates 
[1], the Lagrange analytical method of integration in time [2], and also including the Lagrange 
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method to account for the force of external attenuation [3].  The obtained equations were based 
on the spin of the rotor about its center of mass while simultaneously having the center of mass 
whirling about the rotor’s journal centerline.  The equations described the situation where the 
direction of any force acting to bend/deflect the rotor and the direction of the resulting 
bend/deflection were always collinear.  Rotor resonance was considered as the process in which 
unlimited bending/deflection of the shaft would occur, along with a simultaneous change in 
position of the center of mass relative to the centerline of rotation/whirling and the geometric 
center of the disc.  It was considered that this change in position of the center of mass occurs 
instantly upon the rotor reaching its critical velocity at approximately 90 degrees phase angle 
referenced to fixed (Newtonian) coordinates.  After, with further acceleration, the super­critical 
mode of rotation is reached in which self­centering of the rotor occurs at the end of the system 1st 
critical speed range and a phase angle of 180 degrees.  The introduction of the concept of viscous 
friction into the dynamics of the rotor [3] allowed for the presentation of the resonance 
phenomenon and rotor self­centering as occurring during a process that has a specific duration.  
At the same time, the resonance phenomenon had remained defined by only the critical velocity 
calculated as a single speed.  However, experimental evidence has shown that the resonance 
phenomenon on flexible rotor/shaft systems starts at a considerably earlier velocity than the point 
calculated as the critical speed, and likewise the self­centering of the rotor occurs at velocities 
that exceed the critical velocity.   
 
Experiments showed (Figures 14) that resonance phenomena take place within a definite range 
of velocities that are close to the first system critical velocity of the rotating machine.  However 
the limits of this velocity region were not theoretically determined with sufficient accuracy. 
Experiment showed that the calculated predicted critical velocity usually does not coincide with 
the real velocity where the maximum peak deflection of the rotor shaft takes place (as measured 
relative to global (fixed) coordinates).  Inertial theory of rotor dynamics [4, 5] showed that the 
preliminary preparation of a rotor to transfer through its first system critical velocity starts at sub­
critical velocities. This period of initiation of the behavior associated with the critical velocity 
correlates to the velocity range encompassing a response phase angle shift from 0° to ~90°, 
during which the rotor’s mass centroidal center (or mass axis) is precessing around the geometric 
center (journal constraints axis). At the same time, the bending/deflection of the shaft does not 
yet exceed the magnitude of the rotor’s eccentricity. A further increase in the bending/deflection 
of the shaft beyond this threshold indicates the beginning of the resonance phenomena which, in 
agreement with experimental evidence, governs and ensures the continuation of the shift in phase 
angle up to 180°.   
 
Note that the main theoretical research of Jeffcott rotor dynamics was conducted in conditions 
where the “rotor­shaft” system rotates uniformly, at constant velocity, and the necessary rotating 
moment (drive torque) is created by the external driving gear. This means that a change in rotor 
velocity was considered as inessential to the model.  In practice however, a change of rotor 
velocity occurs with acceleration of the rotor, and at the same time, the resonance phenomena 
becomes apparent at any instance when the rotor makes accelerated or decelerated rotation under 
the effect of torque applied by the drive gear, or under the effect of inertia moments during the 
rotor deceleration with drive torque stopped.  In connection with the aforesaid descriptions, it was 
stated necessary to define the specific area of rotor velocities that are connected with and define 
the system’s resonance phenomena. For this, it is necessary to determine the rotor velocities when 
the resonance phenomena of the system are started and ended.  Moreover, it is necessary to 
explain the physics of the resonance phenomenon and mechanism by which the observed phase 



27  

angle shift occurs from 0° to 180° and during which the rotor’s center of rotation (non­rotating 
reference frames) transfer while passing through the system critical velocity at ~90 degrees 
phase. 
 

For a continuous rotor as a system in which the mass of the shaft has significant influence on its 
dynamics, the same methods should be applied to the rotor centroidal mass axis as a line crossing 
three points, the total rotor center of mass and the two centers of masses of two fundamental 
harmonic modal elements in null mode which comprise each half of the rotor. 

 
5.1 System of rotor dynamic equations 
 
In this section we first see the system of equations that comprehensively describes the uniform 
rotation of a Jeffcott rotor in conditions of weightlessness and the absence of any external or 
internal friction that inhibits rotation.  The system of equations determines the transfer mode of 
the rotor's rotation through subcritical velocities as well as the rotor's supercritical rotation mode 
with supercritical velocities. This system of equations will be consistently referenced while also 
considering other issues, since the rotation of any accelerated rotor invariably transfers into 
uniform rotation of the rotor.  The scheme of rotation and acting inertial moments is explained in 
Figure 7 shows the rotation of the rotor around the shaft’s geometric centerline and the lateral 
orbital rotation of the shaft around the journal/support axis. Additionally, the rotating and inertial 
moments of the “rotor­shaft” system are noted.  The rotating moments act around the shaft’s 
geometric axis. The inertial moments are stipulated by the uneven distribution of mass around the 
shaft's geometric axis and rotational axis.  The inertial moments simultaneously act around the 
shaft’s geometric axis and around the journal rotational axis. The location of the rotor as shown 
in Figure 7 corresponds to rotor rotation with an initial velocity equal to the one when the shaft is 
bending under the effect of centrifugal force (i.e. centripetal reactive force), analogous to when a 
continuous rotor­shaft undergoes pseudo­static deformation.   

 

 
 

Figure 7 
 
The scheme of forces and moments that act upon the rotating rotor is presented in Figure 8, 
representing the system at ~ 45 degrees phase shift angle (β).  
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Figure 8 

 
The system of equations that describes the complete dynamics of a Jeffcott rotor in the complete 
range of velocities takes the following form: 

 

 
At the same time, the following forces and moments act upon “rotor­supports” system with 
statically unbalanced rotor depending on the rotation velocity: 
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Where:       

   m      ­ rotor mass; 

ω      ­ rotor rotation velocity;  

ωr       - commencement of subcritical critical velocity range at ~ 0­5 degrees phase 

   ωkr      ­ critical velocity at ~ 90 degrees phase 

    ��
�   - end of critical velocity range, begin of supercritical velocity range,   

    e       ­ rotor eccentricity; 

 a      ­ rotor shaft bend (deflection); 
 k      ­ coefficient (modulus) of rotor elasticity or rigidity 

 β      ­ lag angle of rotor's response vector around the shaft's geometric axis; angle of phase  
             shift; 

Mkr     ­ total rotating moment that ensures the rotor’s uniform rotation; 
    ���

�    ­ rotating moment that ensures uniform rotor rotation around the shaft’s journal axis  
                centerline; 

���
�   ­ rotating moment that ensures uniform rotation of shaft's geometric centerline together 

                with the rotor around the journal axis; 

���
�  ­ total inertial moment that prevents uniform rotation of “rotor­shaft” system; 

��
�  ­ inertial moment that prevents uniform rotation of the rotor around shaft’s geometric 

            centerline; 

��
�

   ­ inertial moment that prevents uniform rotation of the shaft’s geometric centerline  
            together with the rotor around the journal axis; 

F c    ­ centrifugal force applied towards the rotor’s center of mass; 

ν ­ angle which is shaped by centrifugal force and the direction of vector of imbalance;  

  Fy       ­ shaft’s elasticity force; 

θ     ­ angle that is formed by the shaft’s elasticity force and the direction of the vector of  
              imbalance; 

��
�  ­ inertia force that prevents rotation of shaft’s geometric centerline together with the rotor  

              around the journal axis; 
 η    ­ angle that is formed by the force ��

�	and direction of the vector of imbalance; 

R1  =  R2    ­ force of reaction of the supports; 
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This system of equations and scheme of forces and moments can be used for the definition of 
resonance velocities and the range of steady operating velocities of the rotating machine. Under 
“resonance velocity” we will consider the velocity that determines the beginning and completion 
of the resonance process when the rotor velocity is changing during acceleration. 
 
 
 

5.2   Resonance velocity of rotor rotation in supercritical rotation mode 

 
Rotor dynamics usually assumes that the range of operative velocities covers the whole range of 
supercritical velocities up to the area of auto­oscillations. However the system of equations that 
describes the uniform rotation of a Jeffcott rotor shows that the range of operative supercritical 
velocities starts from the velocity that is 1.74 times higher than critical velocity. To explain this 
let’s show some dependencies of relative parameters of rotor rotation from relative velocity on 
transfer and supercritical mode. 

 

Relative shaft bend from relative velocity on transfer and supercritical mode has the following 
view: 

 

 

 

These dependencies are shown in Figure 9. 

  ~                                 
                                                                   Figure 9 
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Let's show the dependency of the relative rotating moment ���
�  from relative velocity which 

has the following view: 
 

 

 
 
These dependencies are graphically demonstrated on Figure 10. As it follows from the chart, 

on supercritical velocities the relative minimal inertial moment ��
�/��� 6.75   correspond to 

the system's rotation velocity, which is approximately 1.74 times higher than critical velocity. 

This velocity is the minimum velocity    ω = 1.74 ωkr when uniform rotor's rotation is possible.         
 

 
 

Figure 10 

 

In accordance with the chart (Fig. 9), the minimal velocity corresponds to rotor's rotation 

when shaft's bend is equal to a= 1.5e. Such shaft's bend relates to completion of resonance 
phenomena on supercritical mode during increasing of rotor's velocity. 
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If ���
�   / ke2

 > 6.75, then velocity of rotor's uniform rotation exceeds the minimal velocity  
ω = 1.74.ωkr, sufficient for transfer of rotating frames at rotating speed corresponding to 
peak response and at 90 degrees phase angle V (Figure 8). 
 

If  ���
�  / ke2 < 6.75 then the rotation of the system becomes slower 

Inertial moment (Fig.10) becomes bigger than rotational moment and we monitor the process 
never reaches switch of reference frames and rotor's self­centering. In classical 
rotordynamics this would represent a “rigid “rotor in “rigid supports. Operating speed 
of this type of rotating machines should be always above the system 1st “critical speed”.  
 

If relative rotational moment ���
�  / ke2 < 6.75 is less than the rotational moment ��

�/ ke2 = 1 

which corresponds to critical velocity ωkr, then   the   rotor's velocity reaches one of the 
velocities of transfer mode. In classical rotordynamics this would represent a “rigid” 
rotor on elastic supports 
 

If 1 <	���
�  / ke2   < 6.75 then the resonance phenomenon takes place that results in destruction 

of rotor machine. This state is equivalent to under-damped system with high sensitivity to 
unbalance and high amplitude amplification. This would represent a flexible rotor clamped 
in “rigid” bearings/supports.  
 

Therefore the minimal velocity ω = 1.74.ωkr, determines the velocity of completion of 
resonance phenomena. It also determines the range of operative velocities of rotor's uniform 
rotation up to the moment of auto­oscillations.  
 
At the same time the minimal velocity determines the commencement of resonance phenomena at 

rotor’s shutdown. Therefore the minimal velocity ω = 1.74.ωkr   should be considered as 

resonance velocity ωr 
s 
at supercritical mode of rotor’s rotation. 

 
Variation of parameters relation from Figures 9, 10, 12 and 13, and variations of parameters 
from proportionality equation of rotor fundamental harmonic resonance in free­free state are 
graphically presenting rotor responses at critical velocities which are dependent on rotor 
mass axis eccentricity and rotor body rigidity based on its geometry and material properties.        
 
 

   
\ 
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Critical velocity of the steady system rotation 

Critical velocity ωkr  is considered in generally as the theoretical velocity since it is not 
possible to confirm it by experiments.  
By reaching the critical velocity it creates duality of rotor's rotation parameters. At this 
velocity the uneven change of shaft's bend, angle of rotor's turn around shaft's middle line, 
inertial and rotating moment should take place. In mechanics the continuous changes of 
rotor's rotation parameters are impossible. Any process should be constant. Absence of 
resonance's constancy is explained by the fact that system of equations (1) of dynamics of 
Jeffcott rotor was obtained when change of velocity was very slow. The change of velocity 
could be neglected and we could consider that rotor rotates uniformly. In result all processes 
required for "rotor­ shaft" system's transfer of reference frames through critical velocity is 
almost instantaneous. As a result, we had a false impression that critical velocity 
separates non-linear response across system critical velocity frequency range which 
occurs at subcritical velocities, from the process of rotor's mass axis self-centering, 
which occurs at supercritical velocities, and vice-versa. 
 
Based on the above statements, it is necessary to consider the rotor dynamics and taking into 
account the effect of additional accelerating moment which ensures uniformly accelerated 

rotor's rotation. Additional accelerating moment ���
�  can be presented as part of rotating 

moment ���
�  i.e. we can consider that ���

�
 =0.1 ���

�
 
 etc.                                      

 

As result, the sum of moments ���
� and ���

�  can be presented as Σ���
�  = n  ���

�   where n >I. 

The moments Mkr and ���
�   will be increased in the same proportion. 
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System of equations of uniformly accelerated Jeffcott rotor 
rotation 
 
Taking   into   account   the   above   comments, let's consider the scheme of forces and 
moments which affect the rotor during uniformly accelerated rotation which is demonstrated 
in Figure 8 and 11. 

Let's introduce to the scheme the accelerating moment ���
�   which ensures uniformly accelerated 

rotor's rotation. 

The affect of accelerating moment ���
�  which acts onto rotor will result in appearance of 

additional inertial moment	���
� . This inertial moment can be presented as force Fu

yc that is 

acting on the arm a. 
Let's apply the D’Alembert principle in order to transform the task of dynamics to the task of 
statics, i.e. let's transform the task of uniformly accelerated rotation to the task of uniform 
rotation of "rotor­shaft" system. At the same time at the scheme presented in Fig.5 let's 

demonstrate the rotational moment  ���
�  which ensures uniform rotation of rotor as the pair 

of forces ���
�   which have arm e. The accelerating moment ���

�  is also presented as the pair 

of forces���
�   which have arm e.          

  
                        

  
 

   Figure11 Disc of a Continuous rotor reference frames  
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In order to obtain the system of equations we take into consideration the condition of rotor's 
dynamic balance during uniformly accelerated rotation. In the beginning let's compile the 

equation of moments relatively to the point O at definite instant velocity ω. 
 

 

or 

 

Since	���
�   = n m ω2 a2 

– m ω2 a2
, then it follows from dependency that: 

                               
 
Therefore there were defined all forces and moments which affect onto rotor that rotates in 
uniformly accelerated way around rotational axis. 
 

Let's compile the equation of moments relative to the point B at definite instant velocity ω.   

 

or 

 

It follows from dependency that: 

 

The dependency (12) shows that rotor turns around shaft's middle line at angle 90° while 

value of a is less than e since: 

 

Let’s compile the equation of moments relatively to the point C and definite instant velocity ω: 

 

or 
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The final view of Equation (15) will be: 

                                         

For transfer mode of rotor's rotation around rotational axis the equation (16) can be presented 

as: 

 

 

The equation (17) allows us to determine the value of shaft's bend depending on rotor's 

rotation velocity: 

 

The equation (17) also allows us to determine the value of angular velocity when the 

condition of dynamic balance is ensured: 

 

As it follows from the dependency, the critical velocity of rotor's rotation ωkr is achieved in 

case if: 

 

Let us refer to graph of dependency of relative shaft's bend on relative velocity shown in 
Figure 9. The graph indicates the velocity of rotor's rotation when the resonance 

phenomenon occurs. Let's call it as resonance velocity ωr on transfer rotation mode. 

Since a/e = 1/n, then resonance velocity ωr is always less than critical velocity ωkr. 

In Fig.12 the dependency of relative resonance velocity on value n is presented. It was 
compiled applying graph in Figure 9. 
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Figure 12 

The Figure 13 presents dependency of rotor's phase angle β    around   shaft's   middle   line     
relative t o  resonance velocity. 
 

This  dependency   shows  that  angle  β is  less  than 90°   for  any  resonance  velocity ωr        
at  the  moment  of resonance phenomena commencement. Therefore, in order to ensure 

conditions for rotor's self­centering at preset resonance velocity ω, then rotor should be 

rotated beyond the angle of 180°- β. 
 

At the same time the angle β should correspond to preset resonance velocity. 
The conducted research shows that accelerating moment determines the resonance velocity 

ωr and angle of rotor's turn around shaft's middle line at the moment of resonance 
phenomena commencement. 
 
In summary, the conducted research defines the range of velocities which is connected with 

resonance phenomenon. This range of velocities lies between resonance velocity ωr of 

transfer rotation mode and resonance velocity ��
� = 1.74 ωkr of supercritical rotor's rotation 

mode. 
 
Finally, the conducted research explains the physics of resonance phenomenon and effect of 
rotor's mass axis self­ centering above critical velocity range. 
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Figure 13 

 

Physics of resonance effect 

In the theory of rotor dynamics the resonance is considered as the phenomenon which is 
similar to resonance phenomenon in theory of oscillations. Appearance of resonance is 
explained by coincidence of rotational velocity of "rotor­shaft" system with critical velocity 
rotor critical velocity is a synonym of rotor inherent fundamental harmonic resonance 
frequency in free­free state, dependent on rotor material properties ratio of longitudinal 
rigidity over its mass. However the resonance in rotor dynamics considerably differs from 
resonance of linear harmonic oscillation processes. This is the resonance phenomenon that 
creates conditions for final rotor's turn around shaft's middle line when rotor's center of mass 
is located between geometrical axis and rotation axis. In result rotor and shaft which were 
rotating around rotational axis with their heavy side radially outwards, after resonance they 
rotate with their lightweight side radially outwards. 
In order to explain the peculiarities of resonance in rotor dynamics examine Figure11 with a 
reference to the action of moments relatively to rotor's center of mass. 

The moments that were generated by the pairs of forces ���
�   and ���

�   strive for overcoming 

the shaft's elasticity force moment Fy that is defined relative to the rotor's center of mass. 

However, until the projection of forces ���
�  and	���

�
 , on the line of action of shaft's 

elasticity force Fy, is equal to elasticity force, rotor will achieve the state of natural rotation 

around its mass axis relative to the shaft's middle line when it reaches  angle of β ~ 90°. 
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When  rotor's   velocity   exceeds  resonance velocity ωr ,  the value of forces vectors ���
�  and 

���
� ,  starts to exceed  the  value of shaft's  elasticity  force Fy. The elasticity force is unable to 

retain rotor relatively to the rotational axis. At the same time the increase of rotor's velocity assists 

in “unlimited” moving­away of rotor from rotational axis. The center of mass and point of rotor's 

mounting to the shaft are moving radially away from rotational axis. This phenomenon takes 

place until the moment when rotor turns by an angle of β = 90° around shaft's middle line. 

 

In order to understand the reason of rotor's turn let's consider the affect of moments relatively to 

the geometric center of rotor (point B). The moments generated by the pairs of forces ���
�  and   

���
�   are striving to turn rotor around shaft's middle line overcoming the moment that is generated 

by centrifugal force around point B. At rotor's velocity that exceeds resonance velocity ωr the 

moment generated by centrifugal force is not able to counteract to the moments generated by 

forces���
�  and ���

� . Therefore rotor continues to turn around shaft's middle line. At sufficient 

power of driving gear the alignment of center of mass with a line of shaft's elasticity force action 

takes place. New location of rotor's center of mass creates conditions for rotor's self­ centering 

and self­balancing (Threshold of gravity stability and dynamic equilibrium in state of minimum 

action). At same time, the rotor amplitude is descending relative to rotating axis.. If the power of 

driving gear is not sufficient to overcome the rotor inertia, then resonance phenomena result in 

unstable mode of rotor's rotation and destruction of rotor and machine. 

The peculiarities of rotor dynamics during transfer through critical velocity are well 

demonstrated by the results of experiments presented on the Fig.14. 
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Figure 14 
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Conclusion  
 

 1. Study has shown that 1st critical speed of the system with flexible supports forced resonance 
frequency response is not synonymous to rotor linear oscillating fundamental harmonic 
resonance frequency in a free state in gravity environment.  
 
2.  The operating speed frequency, and the efficiency of an operating horizontal rotating 
machine with hydrodynamic bearings, consisting of “rigid” or “flexible” rotor, constrained 
by gravity in two bearings within a finite “L” distance between them, should not be higher 
than rotor natural harmonic resonance frequency, in order to avoid the situation that any 
external pulsating excitation force would excite fundamental harmonic resonance frequency 
(3rd mode) and could destabilize rotor operating in oil bearings, and excite subsynchronous 
whirling at speed of two times system 1st critical speed. 
 
3.  For a stable rotor operation at rated speed and load, in rotating machine system, the total 
system stiffness and mass including rotor, bearing oil and bearing support, must have 1st 
critical resonance response at system critical velocity 10% to 20% lower, than 0.5x   of 
system operating speed. At the same time a resultant radial deviation from mass 
eccentricities, between journals axis and rotor body centroidal mass axis must be brought to 
“balance”(symmetry) on balancing machine within allowable limits according to ISO1940­1, 
for selected speed of the system 1st critical velocity. Centrifugal forces generated from axially 
distributed eccentric mass axis, and dynamic mass axis created from radial and axial torque 
moments relative to gravity constraints from three correction masses proportionally 
distributed axially on rotor body between constraints, must create a virtual mass axis that is 
practically coincident with rotating journals axis. 
 

4. Operating speed of machine with rigid rotor on a rigid supports must be lower than system 1st 
critical speed. That way, the switching of non­rotating reference frame never takes place, and any 
“unbalance” can be resolved by balancing the rotor in two planes. 
 
5. When machine with rigid rotor on rigid bearings operating speed is higher than system 1st 
critical speed, bearings supports must be devised in way to allow mass axis self centering, (e.g. 
“squeeze film dampers”, magnetic bearings, hydrostatic bearings or lattice springs), to avoid 
damaging to bearings and structure. 
 
For an approach to balancing, when viewing turbine and generator rotors  as a continuous  solid 
body, operating in hydrodynamic oil bearings, constrained on elastic supports by gravity, it has 
been  proven in practice that for rotors for steam and combustion turbine and generator sets over 
~40 MVA, it is more economically beneficial to balance the rotor mass axis eccentricities on high 
speed balancing machines based on displacements at speed equivalent to just below 90 degrees 
phase of the system 1st critical velocity, with weights placed simultaneously in three planes, 
distributed axially proportionally to size of response displacement vectors measured at at journals. 
With the added balance masses forming a dynamic mass axis of their own, when the rotor is 
accelerated, this dynamic mass axis will create a “virtual” mass axis against the rotor’s inherent 
static mass axis, effectively simulating a concentric overall mass axis coincident with the journal 
axis (within a reasonable, machining allowable tolerance, according to modified interpretation of 
the ISO 1940­1). Rotor will remain and operate as balanced at any speed.  The minimum of three 
planes is necessary for balancing, following the 2N+1 formula for the number of nodal points 
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(anti­node and nodes) defining the purely rigid modal elements segments of the eigenvector of a 
flexible rotor, or a rigid bowed rotor at a fundamental null mode. Two additional planes may be 
required for trim balancing of residual “unbalances” at operating speed and overspeed, for very 
flexible rotors. Considering that rotor vibration is rooted in eccentricity of the mass axis of a 
continuous rotor, reducing vibration should be viewed as compensating mass axis eccentricity and 
restoring symmetry of rotor body mass about the rotor journal centerline axis. Mass axis 
eccentricity relative to journals centerline axis and corresponding responses CAN NOT BE 
RESOLVED BY “BALANCING” for all speeds.   
 

6.  When rotor is accelerated above supercritical velocities, or at constant operating velocity with 
increasing machine load, mass axis, as non­rotating reference frame  is continuously self-
centering in space, forced by inertia forces from the residual axially distributed mass 
eccentricities, or from asymmetric torque from external sources. Journals centers during mass axis 
self­centering at same time are whirling as gyroscopic rotating pendulums, pinned at COM, and 
flexibly connected at respective bearings and supports. Visual presentation of journals motions 
from sensors referenced to global coordinates is interpreted as “rocking” motion of 2nd critical 
speed.  
 
“Balancing” the response of such rotors, with axially asymmetric masses, at supercritical speeds 
would not be necessary if balancing on balancing machine was done in three planes at subcritical 
speed. 
 
7.  When balancing on balancing machine, turbine and generator rotors with long flexible 
coupling overhang, it is necessary for balancer to determine if additional bearing support is 
necessary during balancing process. (Ref.: “Long­Overhang rotor vibration estimation: an 
Approximate Approach”, 2004.) 
 
8.  Balancing shaft sections between bearings on an assembled turbine generator set, there must 
be available three balancing planes, and balancing should performed in a same manner as 
balancing rotor solo on high speed balancing machine. 
 
 
9.  Therefore the objective of balancing rotors is to vanish the bearings dynamic reaction forces, 
and reduce journals radius of orbital motion at 1st critical speed, and consequently at operating 
speed, to magnitude of internal, inherent mass axis eccentricity (defined as permissible 
eccentricity from ISO 1940­1, with reference to speed of system 1st critical speed). Accordingly, 
balancing methods of large turbine and generator rotors should be balanced, not based on axially 
distributed point mass “unbalance” force vectors, exciting particular mode eigenvectors, but based 
on compensating the inherent longitudinal mass axis between bearings constraints, with rotor in 
state of rest, by dynamic radial forces and axial moments, across rotor COM, compensating 
axially distributed masses in three planes, forming a dynamic mass axis mirror imaging the 
internal, inherent, mass axis (line intersecting centers of masses) of rotor in state of rest (Null 
mode harmonic).  
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